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1 Mathematical and Historical Backgrounds 1. The critical characteristic multipliers are a complex pair

Dynamic problems are often composed in the form of differe -a?végg eou;fﬂfstgzstén;; Ctlcgglcibgieclglk/:elqar\]/glﬂt:tg l[?] éhfl ocp:;tll_aifu .
B e ahenomann,congn of autonomous nonlinear <ysiems and cabedondry
supported by stability charts that show the stability of the systeS S‘:;%r Neimark-Sackebifurcation of a corresponding nonlinear
for a range of system parameters. Y :

: - . 2. The critical characteristic multiplier is real and moves out-
quLTatt?(;Sn paper, the stability chart of the delayed damped Math'es'de the unit circle at-1. The arising bifurcation is topologically

equivalent to the saddle-node bifurcation of autonomous nonlinear
() + kX(1) + (8+ & cost)x(t) =bx(t—2) (1) systems and callegeriod onebifurcation of a corresponding non-
linear system.
is constructed. This equation combines the effect of parametric3. The critical characteristic multiplier is real and moves out-
excitation on the delayed and damped oscillator. side the unit circle at-1. There is no topologically equivalent
The three special cases=0, =0, andk=0 are known from type of bifurcation for autonomous nonlinear systems. This case is
the literaturg[1—3]. These cases will be overviewed briefly in thecalled period twoor period doublingor flip bifurcation of a cor-
following subsections. responding nonlinear system.

1.1 Time Periodic Systems. Parametric excitation often oc- Generally, for periodic systems, stability criteria cannot be
curs in mechanical systems, when some characteristic proper@n in closed form, only approximation methods can be used.
of the system change periodically in time. The vibrations of rotaBuch an approximation method is the Hill's infinite determinant
ing shafts with non-symmetric cross-section, the dynamic behawethod developed by Hil6] and Rayleighi 7]. The most straight-
ior of gears, or vibrations in belt drives of machine tools are afprward and less accurate method is the piecewise constant ap-

described by time periodic systems. proximation of the coefficient matrij8,9]. There are other meth-
The general form of linear periodic ordinary differential equacds described in the book of Nayfeh and Mo¢kO]: the
tions (ODES reads Lindstedt-Poincare technique and the method of multiple scales. A
novel approach, the method of Chebyshev polynomials, was de-
yt)y=A)y(t), At)=A(t+T) (2) veloped by Sinha and W{11] and improved by Sinha and
. L o Butcher[12]. Bauchau and Nikishko{13] worked out a numeri-
Here, the coefficient matrix is time periodic. cal algorithm for extracting the dominant characteristic multipliers

For periodic ODEs, stability condition is provided by the Flowithout the explicit computation of the principal matrix. They
quet Theory4]. If y(T)=®y(0), then® is called principle ma- applied their method for rotorcraft stability evaluation.
trix, monodromy matrix or Floquet transition matrix. The eigen-

values ofd are the characteristic multipliegs; (j=1,2, ... n) Example: The Damped Mathieu EquatioriThe caseb=0 of

calculated from Eq. (11) gives the traditional damped Mathieu equation:
de(ul—®)=0 ®) (1) + k(1) + (5+& cost)x(t)=0. 4)

If uis a characteristic multiplier, and=exp\T), then\ is called

characteristic exponefb]. This equation was first discussed by Math[d4] in connection

The trivial solutiony(t)=0 of system(2) is asymptotically with the problem of vibrations of an elliptic membrane. Stephen-
stable, if and only if all the characteristic multipliers are in moduson[15] used an approximate Mathieu equation, and proved, that
lus less than one, that is, all the characteristic exponents hayvig possible to stabilize the upper position of a rigid pendulum by

negative real parts. vibrating its pivot point vertically at a specific high frequency.
Three basic types of stability losses can be classified accordingrhe stability chart of the Mathieu equatidd), the so called
to the location of the critical characteristic multipliers. Strutt-Ince diagram was first published by van der Pol and Strutt
[1] in 1928. In Fig. 1, the Strutt-Ince diagram is shown fer
*all correspondence to this author =0, 0.1 and 0.2. Fok<0, the system is always unstable. The
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1.2 Delayed Systems. It has been known for a long time, with a theorem of Pontryagif89]. A more sophisticated method
that several problems can be described by models including pasts developed by Spén [23] applicable even for the combina-
effects. One of the classical examples is the predator-prey motieh of several discrete and continuous time delays. A novel ap-
of Volterra[16], where the growth rate of predators depends ngroach was developed by Olgac and Sidd# for linear systems
only on the present quality of fodday, prey, but also on the past with a single delay.
quantities(in the period of gestation, sayThe first delay models ) .
in engineering appeared for wheel shimmy by von Schlippe andExampIe. The Delayed OscHIator.The cases =0 of Eq.(11)
Dietrich [17], and for ship stabilization by Minorskii8]. gives the second order delayed oscillator

One of the most important mechanical applications is the cut- X(t) + kX(t)+ ox(t) =bx(t—2m) (7
ting process dynamics. After the extensive work of Tlusty et al. - . .

[19], Tobias[20] and Kudinov[21,27], the so-called regenerative Although the stability chartsee Fig. 2 in the parameter plane
effect has become the most commonly accepted explanation §6¢P) has a very clear structure, it was first published correctly
machine tool chattef23,24). This effect is related to the cutting ©NY in 1966 by Hsu and BhafP]. According to Kolmanovskii
force variation due to the wavy workpiece surface cut in the préd Noso34], this chart was also published in the literature in
vious revolution. Russian, often refe_rr_ed there as Vyshne_gradsk_u diagram. For the

Delayed equations also arise in robotics applications, e.g. tef@S€x =0, the stability boundaries are lines with slopd and
manipulation with information delay can be mentiofj@s—27. —1- For«=0.1and 0.2, the stability boundaries are not lines any
Time delay also arises in neural network models, where the inté&fore. Thes=b line is associated to saddle-node instability, all
actions of the neurons are delays]. the other boundary curves represent Hopf instabilities.

The systems, where the rate of change of state is determined by 3 Time Periodic Delayed Systems.A linear periodic
the present and also by discrete past states of the system, RfHE with a single delayed term has the form
described by retarded differential-difference equatitRBDES.

The initial-value problem of general RDDEs was first correctly YO=AMYD)+B)y(t—7), A(t+T)=A(1),

formulated by Myshkig29]. Since then, several books appeared B(t+T)=B(1) ®)
summarizing the most important theorems, like the books of My-
shkis [30], Bellman and Cookg31], Halanay[32], Hale [33], The Floquet theorem can be extended for these systems as it was
Kolmanovskii and Nosoy34], Stepan [23], Hale and Lune[35], shown by Halanay41], but an infinite dimensional linear opera-

and Diekmann et al.36]. tor, the so-called monodromy operator, is defined instead of the
A linear autonomous RDDE with a single delayed term has tHmite dimensional fundamental matrix of the traditional Floquet
form theory[5,33]. This operator can be defined By=Uy,, where the

continuous functiory, is defined by the shify,(9)=y(t+9),

y(O=Ay(t)+By(t—17) ) 9e[-r0], andT is the principal period of systeri®).
where A and B are nxn matrices andr>0. The characteristic ~ The nonzero elements of the spectrunioére called the char-
function of system5) reads acteristic multipliers of syster{B), also defined by
de(Al—A—Be *")=0 (6) Ker(ul —U)#{0} (9)

Opposite to the characteristic polynomial of autonomous ODHgstead of(3). Similarly to the periodic systems, jf is a charac-
this characteristic function has, in general, infinite number of zéeristic multiplier, andu=exp(T), then\ is called characteristic
ros. The sufficient and necessary condition for asymptotic stabiligxponent.

of (5) is that all the infinite number of characteristic roots have The trivial solution of systen) is asymptotically stable, if and
negative real parts. only if all the (infinite number of characteristic multipliers are in

The first attempts for determining stability criteria for secondmodulus less than one, that is all the characteristic exponents have
order RDDEs was made by Bellman and Co¢Ré&] and Bhatt negative real parts. Similarly to time periodic ODEs, the three
and HsU 37]. They used the D-subdivision meth@B] combined types of stability losses can be identified according to the location
of the critical characteristic multipliers: treecondary Hopfthe
period one and theperiod twoinstability routes.

For periodic RDDEs, the operattt has no closed form, so no
closed form stability conditions can be expected. For practical
calculations, only approximations can be applied. An alternative
of Hill's infinite determinant method was used by Seagalman and
Butcher[42] to determine stability properties of turning processes
with harmonic impedance modulation. Another approach was
used by Insperger and ‘Pt [43] when the discrete time delay is
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Fig. 1 Strutt-Ince stability chart of the damped Mathieu equa-
tion (4) Fig. 2 Hsu-Bhatt-Vyshnegradskii stability chart of Eq. @)
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approximated by special continuous ones, and the infinite dimddsing trigonometrical transformations, expressid8) can be
sional eigenvalue problem is transformed into an approximate fiansformed into the form

nite dimensional one. The time finite element method was devel-

oped by Bayly et al[44] and applied for interrupted cutting ” _ -

processes. Insperger and [S#e [45] developed the so-called X(t)= D, CeM Mt C e (14)
semi-discretization method for the approximate stability investi- k==

gation of general time periodic delayed systems, like equatio Lo .
containing distributed time delay or multiple time delays. Numeri?ﬁe sul‘:)stltuthkn Into tkle.ksyst_e(rll), and the balancmg. of the
cal simulation is also a possible way for predicting stability progdarmonics & " and é* =™ yield two systems of equations for

erties[46,47). the coefficients<C, andC,, respectively:
Example: The Delayed Mathieu EquationThe casex=0 of e e
Eq. (11) gives the delayed Mathieu equation 5 Ci-1t6Cit 5 Ci1=0, k=—o, ... 0 (159
X(t)+(5+¢& cost)x(t)=bx(t—2m) (10)
The stability chart of this equation was constructed by Insperger fEk_lJrngkJr iEkH:O, k=—o, ... (150
and Stean [3]. Their work was based on the general theorem, that 2 2

the numberw=€"" is a characteristic multiplier of syste(8), if
and only if, there exists a nontrivial solution in the foryit)
=p(t)e", wherep(t)=p(t+T). They showed analytically that
for any e, the boundary curves in the plang,b) are straight lines
shifted along the boundary curves of the Strutt-Ince diagram. For
e=1, the stability chart in the planeS(b) can be seen in Fig. 3,
where dashed lines refer to period two loss of stability, continuo S it is satisfactory to analyz€5a) only. There is a nontrivial
lines refer to period one loss of stability. A domain denoted by & tion of systen({15a), if the number zero is an eigenvalue of
refers to an asymptotically stable system, while U refers to inst'_fh-e so-called Hill's infin’ite matrix

bility. The frame-view of the 3-dimensional stability chart in the

space §,b,¢e) is shown in Fig. 4.

where
C =6+ (N +iK)%+ k(N +ik) —be 27 1K) (16)

Equations(15a) and (15b) are satisfied if and only i\ is a
characteristic exponent. Equatiofi$a) and(15b) are equivalent,

el2 ¢4 el2 O

H(\,8,b,e)= 0 €/2 ¢ €2 O
2 Delayed Damped Mathieu Equation: Analytical In- 0 &2 ¢ &l
vestigation -
The equation of our interest is the delayed damped Mathieu ' ' ' a7
equation )
(1) + kX(1) + (5+& cost)x(t) = bx(t—2) (11) This matrix represents an unbounded linear operkitdg—15.

Here, Iﬁ is the Hilbert space of the complex sequences
The special caseb=0, =0, and«x=0 was introduced in the (7 7,7 .. .)withS;___ |z|?<. As itis the case for

previous section. Here, the general chse0, #0, and«#0 IS (ynpounded linear operators with compact resolvents, the spec-
investigated. Still, Eq(11) is also special in the sense, that thgrym of H consists of a countable number of eigenvalues. All of

time delay is just equal to the time period of the parametric €xGhese eigenvalues are of finite multiplicity. The number zero is an
tation. Lots of applications, like milling operations, satisfy th'%igenvalue oH if and only if

condition.

2.1 Hill's Infinite Determinant Method. Use the trial so- Ker H(\,6,b,e)#{0} (18)

lution according to the Floquet theorem of RDDEs in the form Formula(18) can be treated as the characteristic equatiof b

x(1)=p(t) e+t e;Tt 12) Since its roots are the characteristic exponents. This is a reformu-
(H=p(e+pe @2 tion of (9) with = exp(2m\).
wherep(t)=p(t+2) is a periodic function. Note, thatis char-  |n order to carry out calculations, only the truncated system of
acteristic exponent, that is, if Re<0, then the solutiox(t)=0 is equations wittk=—N, . .. N is considered. This reduces the in-
asymptotically stable. Expand the periodic functioft) in (12)  finite eigenvalue problem of operatét to the calculation of a
into Fourier series finite determinant
x()=| >, AEk+Be k|| D) Ake‘kt+Bke““>eM
k=0 k=0
(13)
— u=
______ n=-1
s
S
3 4 O
Fig. 3 Domains of stability of Eq.  (10) for e=1 Fig. 4 Stability chart of delayed Mathieu equation (10)
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c.n  €l2 =g, 4(¢,k). In the plang(§, b), these are lines with slopel (see
the continuous lines in Fig.)5Along these boundary curves, there

el2 c_ynyy &l2 exists a characteristic multiplige= + 1, and Eq.(11) has a peri-
D(),8,b,e)=de —p odic solution of period z. This case corresponds to the period
one instability route.
el2 cyoy l2 If j is odd, that isj=2h+1, h=0,1, ..., thenA=i(h+1/2)
el2 ¢y and the corresponding characteristic multiplier is
(19) #:ei(h+1/2)2w:éw: -1 (21)

Although this truncation seems to be a rough approximation, IH this case.c.= 5+b— (k+h+1/22+i(k+h+1/2)«. and E
still has a sound mathematical bapi8,49. This approximation 19) implies 'thke bounda(ry curve rg|ati§n1(5+ b,s),':):o. Fc?rl

is just the same as the one applle_d during the COI’I.SFI’U.CII.OO of e same reason as above, boundary curves exist again in the form
Strutt-Ince diagram. The operatbk is often called Hill's infinite S+b= heres— h thew— —1 stabilit
matrix, and the terminologinfinite determinanis also used, al- =0-1(e,x), where _gil(s’K) gives theu = stabitity
th h in fact. it t a determinant of tri ’ boundary curves of the classical damped Mathieu equation. These
ough, ih fact, 1t1s not a determinant of a matrix. boundary curves are straight lines with slopé in the parameter
2.2 Linear Boundary Curves. The system is at the border plane(d, b) (see the dashed lines in Fig. Along these boundary
of stability, if the relevant characteristic exponent is pure imagfurves, there exists a characteristic multiplper= —1, and Eq.
nary: A\ =iw, wherew is called frequency parameter. (11) has nontrivial periodic solution of period=4 This case cor-
It was shown by Insperger and $#e [3] that for the casec  responds to the period two instability route. _
=0, b#0, Eq. (19) can be satisfied, if and only ib=j/2, | This investigation shows that all the period one and period two
=0,1, ..., and all théoundary curves are straight lines related tgoundary curves are straight lines in th® b) plane with slope
period one or period two instabilities. +1 or —1, respectivelysee Fig. 5. However, in addition to these
If k0, then the proof constructed for the undamped cafglin linear boundaries, secondary Hopf type boundary curves may also
cannot be used. In this case, H39) can be satisfied for fre- exist related to the cases#j/2,j=0,1, ..., as it wagxplained
quency parameters+#j/2, j=0,1, ... as wll, and the relevant above. These curves are determined in the following section by
characteristic multipliersu=exp(i2rw) can be complex num- the so-called semi-discretization method.
bers. Consequently, additional non-straight boundary curves relat-
ing to secondary Hopf instabilities may also exist. However, the

boundaries related to the frequency parameterj/2, j 3 Numerical Investigation by Semi-Discretization

=0,1, ... can benvestigated in the same way as it was done in ) . o o ]
[3]. In this section, the semi-discretization methdd] is used to

If j is even, that isj=2h, h=0,1,...,then\=ih and the construct the stability chart of Eq11). _ _
corresponding characteristic multiplier is The first step of semi-discretization is the construction of time

o 0 interval division ¢;,t;;,) of length At, i=0,1,... sothat 27
p=err=gr=1 (20)  =(m+1/2)At, wheremis called approximation parameter. In the

In this casec,=6—b— (k+h)2+i(k+h)x, and Eq.(19) gives |thinterval, Eq.(11) can be approximated as
the relationf . ,(6—b,e,x)=0 for the boundary curves. For the X(t)+ kX(t)+(5+ec)x(t)=bX_n (22)

caseb=0, the relatiorf , 1(J,e,«x) =0 serves the.= + 1 stability
boundary curves of the classical damped Mathieu equation dé2ere

fined in the formé=g. 1(e,«). This means, that straight bound- 1 [t
ary curves exist for theb#0 case, in the formd—b Ci:ﬂf coqt)dt (23)
§
and
\ v Xi - m=X(ti ) =X(t; ~mAL) (24)
15F 1 That is, the time periodic coefficient is approximated by a piece-
wise constant one, and the time delayed term is approximated by
w 1 a piecewise discrete value. This corresponds to a saw-like ap-

proximation of the continuous time delay shown in Fig. 6.
For the initial conditionx(t;)=x;, X(t;)=X;, the solution and

051 its derivative at each time instaft ,; can be determined:
0 . . . . ' . Xi+1=X( 1) = @p0Xi T 01X + DomXi —m (25)
-1 -05 o0 05 1 15 2 25 3 . . _
1 Xip1=X(tip ) =aXitagX+bypX (26)
where
N
05F ~
o 0 T T
N At
S N\,
05 R ) e
= » AN
N N . -
1 : S b . .
-1 -0.5 0 0.5 1 1.5 2 25 3 _— =
o t tO tl t2 t
Fig. 5 Period one (continuous ) and period two (dashed)
boundary lines for Eq. (11) with e=1, ¥=0.1 Fig. 6 Approximation of the time delay for m=4
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0= K10 EXP(N1AL) + kog XN AL)
91= K11 EXP(N1AL) + ko EXP(NLAL)
a10= K1oh1 EXP(N1AL) + kogh o XP(NLAL)
a11= K110 1 EXPIN1AL) + Ko h o €XPIN5AL)
bom= o1 exp(\1At) + oy eXp(N,AL) + b/ (5+&c;)
b= exp(N1At) + ok, eXpN,AL)
and

— k= K2—4(5+ec))

2 )

)\1,2:

-1
NN

AP VES W

_)\2 b

_)\1 1

A b
RN VEI VR

T A=\ S+eg
Equations(25) and (26) define the discrete map

)\2_)\1 5+8Ci ’

Yi+1=BiVi, (27)
where them+2 dimensional state vector is
Yi=col(X X Xi—1 ... Xi—m) (28)
and the coefficient matrix has the form
a1 a0 0 ... 0 by,
a1 @ 0 ... 0 byy
0 1 0 0 O
B;= . . . . (29)
0 0 0
0
1.5
1 | e=1
05
S
o or e
S
-05}
-1t
-1.5 L
-1 0
1.5 T T T T T
k=0.2
1F | e=2 U
05
o of >
S
-05}
1}
-15 : : : : -
-1 0 1 2 3 4 5

Fig. 7 Stability boundaries for the Eq.
semi-discretization method
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(11) obtained by the

So, the connection between the states;andt;,, is deter-
mined by the transition matriB; . The transition matrix between
the states at; andt; can be given as

D(ts,t1)=Bs-1Bt2...Bs1Bs (30)

A transition matrix between the statestgtandty+ 27 would
give a finite dimensional approximation of the monodromy opera-
tor of Eq.(11). Sincety+ 27 =15+ mAt+ At/2, the transition ma-
trix ®(ty,tn.1/2) cannot be given in the form af30), only the
approximating transition matriceB(tg,t,,) or ®(tq,t,,.41) can be
used. Note, that these matrices are not principal matrices, since
they give the connection between the statedqjatind ty+27
—At/2 or tg+27+ At/2, and not betweely andty+27. The
approximate condition of asymptotic stability is that all the eigen-
values of these matrices are in modulus less than one.

The transition matrix between the states instgnand toq, 1
can be given asb(tg,tom+1) =BomBom—1-..B1Bg. This is a
transition matrix over the double principle period, that is
D(tg,tome1) =P%(tg,tme12). Consequently, the eigenvalues of
D(ty,tom1) give the square of the eigenvalues®fty,t,: 1/0)-
Since|u|<1 if and only if |u?|<1, the stability condition for
®D(tg,tomeq) is the same as for the matrice®(tgy,t,,) or
D(to,tme1)-

The proof of the convergence of the semi-discretization method
is given in[45].

The closed form stability chaift3] of the undamped K=0)
case serves as a basis to check the semi-discretization method. A
comparison of the stability charts obtained by the eigenvalue in-
vestigation of the transition matrica®(t,,t,,), ®(ty,tym1), and
®d(ty,tome1) Shows, that the best convergence is given by the
analysis of the matrib®(tq,t,,.1). The critical eigenvalue of
®d(tg,tome1) is 1 for both the period-one or period-two cases. So,
the two cases can be distinguished only by the analysis of either
D(tg,ty) or P(to,tm+a).

With a reasonable approximation parameter 20, the infinite
dimensional delayed Eq11) is approximated by a 22 dimen-
sional discrete system. The eigenvalue analysis of the transition
matrix ®(ty,tome1) resulted the stability boundaries shown in
Fig. 7.

If we compare the exact stability chart in Fig. 3 to the stability
chart obtained by the semi-discretization method in Fig. 7 for the
undamped reference case-0 ande =1, the approximation error
of the stability boundaries turns out to be less than(tthin line
thickness for the presented parameter domain with approximation
parameter m=20. In [45], the convergence of the semi-
discretization method was presented for increasmghat is, the
error decreases even further for>20. The same applies for the
stability charts of the damped systems with-0. The computa-
tion time of one chart in Fig. 7 was in the range of 400 s using
MATLAB routines in a 400 MHz PC.

The straight stability boundaries related to period one and pe-
riod two instabilities show good agreement between the predic-
tions of the Hill's infinite determinant analysis and the results of
the semi-discretization method. The charts obtained by the semi-
discretization method also confirmed that there exist other non-
straight boundary curves related to secondary Hopf instabilities.

4 Conclusions

The delayed damped Mathieu equation was investigated as a
basic problem of delayed oscillators subjected to parametric exci-
tation. It was proved, that the delayed damped Mathieu equation
also have straight boundary curves with slopg& and—1 in the
plane(é, b) for the period one and period two instabilities, respec-
tively. It was also shown by the semi-discretization method that
other non-straight stability boundaries are also inherited from the
autonomous system where secondary Hopf loss of stability occur.
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